Bison

The YACC-compatible Parser Generator
December 1992, Bison Version 1.20

by Charles Donnelly and Richard Stallman

Copyright (©) 1988, 1989, 1990, 1991, 1992 Free Software Foundation

Published by the Free Software Foundation
675 Massachusetts Avenue

Cambridge, MA 02139 USA

Printed copies are available for $15 each.
ISBN-1-882114-30-2

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the sections entitled “GNU General
Public License” and “Conditions for Using Bison” are included exactly as in the original,
and provided that the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that the sections entitled
“GNU General Public License”, “Conditions for Using Bison” and this permission notice
may be included in translations approved by the Free Software Foundation instead of in the
original English.

Cover art by Etienne Suvasa.

Introduction

Bison is a general-purpose parser generator that converts a grammar description for an
LALR(1) context-free grammar into a C program to parse that grammar. Once you are
proficient with Bison, you may use it to develop a wide range of language parsers, from
those used in simple desk calculators to complex programming languages.

Bison is upward compatible with Yacc: all properly-written Yacc grammars ought to
work with Bison with no change. Anyone familiar with Yacc should be able to use Bison
with little trouble. You need to be fluent in C programming in order to use Bison or to
understand this manual.

We begin with tutorial chapters that explain the basic concepts of using Bison and show
three explained examples, each building on the last. If you don’t know Bison or Yacc,
start by reading these chapters. Reference chapters follow which describe specific aspects
of Bison in detail.

Bison was written primarily by Robert Corbett; Richard Stallman made it
Yacc-compatible. This edition corresponds to version 1.20 of Bison.

Conditions for Using Bison

Bison grammars can be used only in programs that are free software. This is in contrast to
what happens with the GNU C compiler and the other GNU programming tools.

The reason Bison is special is that the output of the Bison utility—the Bison parser
file—contains a verbatim copy of a sizable piece of Bison, which is the code for the yyparse
function. (The actions from your grammar are inserted into this function at one point, but
the rest of the function is not changed.)

As a result, the Bison parser file is covered by the same copying conditions that cover
Bison itself and the rest of the GNU system: any program containing it has to be distributed
under the standard GNU copying conditions.

Occasionally people who would like to use Bison to develop proprietary programs com-
plain about this.

We don’t particularly sympathize with their complaints. The purpose of the GNU project
is to promote the right to share software and the practice of sharing software; it is a means
of changing society. The people who complain are planning to be uncooperative toward the
rest of the world; why should they deserve our help in doing so?

However, it’s possible that a change in these conditions might encourage computer com-
panies to use and distribute the GNU system. If so, then we might decide to change the
terms on yyparse as a matter of the strategy of promoting the right to share. Such a change
would be irrevocable. Since we stand by the copying permissions we have announced, we
cannot withdraw them once given.

We mustn’t make an irrevocable change hastily. We have to wait until there is a complete
GNU system and there has been time to learn how this issue affects its reception.

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (© 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom
to share and change free software—to make sure the software is free for all its users. This
General Public License applies to most of the Free Software Foundation’s software and to
any other program whose authors commit to using it. (Some other Free Software Foundation
software is covered by the GNU Library General Public License instead.) You can apply it
to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

6 Bison 1.20

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

GNU GENERAL PUBLIC LICENSE 7

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

¢. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6.

10.

Bison 1.20

Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software

GNU GENERAL PUBLIC LICENSE 9

which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

10 Bison 1.20

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:
Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.
The hypothetical commands ‘show w” and ‘show ¢’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c¢’; they could even be mouse-clicks or menu items—whatever

suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coomn, 1 April 1989
Ty Coon, President of Vice
This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

11

1 The Concepts of Bison

This chapter introduces many of the basic concepts without which the details of Bison will
not make sense. If you do not already know how to use Bison or Yacc, we suggest you start
by reading this chapter carefully.

1.1 Languages and Context-Free Grammars

In order for Bison to parse a language, it must be described by a context-free grammar.
This means that you specify one or more syntactic groupings and give rules for constructing
them from their parts. For example, in the C language, one kind of grouping is called an
‘expression’. One rule for making an expression might be, “An expression can be made of a
minus sign and another expression”. Another would be, “An expression can be an integer”.
As you can see, rules are often recursive, but there must be at least one rule which leads
out of the recursion.

The most common formal system for presenting such rules for humans to read is Backus-
Naur Form or “BNF” which was developed in order to specify the language Algol 60. Any
grammar expressed in BNF is a context-free grammar. The input to Bison is essentially
machine-readable BNF.

Not all context-free languages can be handled by Bison, only those that are LALR(1).
In brief, this means that it must be possible to tell how to parse any portion of an input
string with just a single token of look-ahead. Strictly speaking, that is a description of
an LR(1) grammar, and LALR(1) involves additional restrictions that are hard to explain
simply; but it is rare in actual practice to find an LR(1) grammar that fails to be LALR(1).
See Section 5.7 [Mysterious Reduce/Reduce Conflicts|, page 55, for more information on
this.

In the formal grammatical rules for a language, each kind of syntactic unit or grouping
is named by a symbol. Those which are built by grouping smaller constructs according
to grammatical rules are called nonterminal symbols; those which can’t be subdivided
are called terminal symbols or token types. We call a piece of input corresponding to a
single terminal symbol a token, and a piece corresponding to a single nonterminal symbol
a grouping.

We can use the C language as an example of what symbols, terminal and nonterminal,
mean. The tokens of C are identifiers, constants (numeric and string), and the various key-
words, arithmetic operators and punctuation marks. So the terminal symbols of a grammar
for C include ‘identifier’, ‘number’; ‘string’, plus one symbol for each keyword, operator
or punctuation mark: ‘if’, ‘return’; ‘const’, ‘static’, ‘int’, ‘char’; ‘plus-sign’, ‘open-brace’,
‘close-brace’, ‘comma’ and many more. (These tokens can be subdivided into characters,
but that is a matter of lexicography, not grammar.)

Here is a simple C function subdivided into tokens:

int /* keyword ‘int’ */
square (x) /* identifier, open-paren, */
/* identifier, close-paren */
int x; /* keyword ‘int’, identifier, semicolon */
{ /* open-brace */

return x * x; /* keyword ‘return’, identifier, */

12 Bison 1.20

/* asterisk, identifier, semicolon */
} /* close-brace */

The syntactic groupings of C include the expression, the statement, the declaration,
and the function definition. These are represented in the grammar of C by nonterminal
symbols ‘expression’, ‘statement’, ‘declaration’ and ‘function definition’. The full grammar
uses dozens of additional language constructs, each with its own nonterminal symbol, in
order to express the meanings of these four. The example above is a function definition;
it contains one declaration, and one statement. In the statement, each ‘x’ is an expression
and so is ‘x * x’.

Each nonterminal symbol must have grammatical rules showing how it is made out of
simpler constructs. For example, one kind of C statement is the return statement; this
would be described with a grammar rule which reads informally as follows:

A ‘statement’ can be made of a ‘return’ keyword, an ‘expression’ and a ‘semi-
colon’.

There would be many other rules for ‘statement’; one for each kind of statement in C.

One nonterminal symbol must be distinguished as the special one which defines a com-
plete utterance in the language. It is called the start symbol. In a compiler, this means a
complete input program. In the C language, the nonterminal symbol ‘sequence of definitions
and declarations’ plays this role.

For example, ‘1 + 2’ is a valid C expression—a valid part of a C program—Dbut it is not
valid as an entire C program. In the context-free grammar of C, this follows from the fact
that ‘expression’ is not the start symbol.

The Bison parser reads a sequence of tokens as its input, and groups the tokens using the
grammar rules. If the input is valid, the end result is that the entire token sequence reduces
to a single grouping whose symbol is the grammar’s start symbol. If we use a grammar for
C, the entire input must be a ‘sequence of definitions and declarations’. If not, the parser
reports a syntax error.

1.2 From Formal Rules to Bison Input

A formal grammar is a mathematical construct. To define the language for Bison, you must
write a file expressing the grammar in Bison syntax: a Bison grammar file. See Chapter 3
[Bison Grammar Files], page 31.

A nonterminal symbol in the formal grammar is represented in Bison input as an iden-
tifier, like an identifier in C. By convention, it should be in lower case, such as expr, stmt
or declaration.

The Bison representation for a terminal symbol is also called a token type. Token types
as well can be represented as C-like identifiers. By convention, these identifiers should be
upper case to distinguish them from nonterminals: for example, INTEGER, IDENTIFIER,
IF or RETURN. A terminal symbol that stands for a particular keyword in the language
should be named after that keyword converted to upper case. The terminal symbol error
is reserved for error recovery. See Section 3.2 [Symbols|, page 32.

A terminal symbol can also be represented as a character literal, just like a C character
constant. You should do this whenever a token is just a single character (parenthesis,
plus-sign, etc.): use that same character in a literal as the terminal symbol for that token.

Chapter 1: The Concepts of Bison 13

The grammar rules also have an expression in Bison syntax. For example, here is the
Bison rule for a C return statement. The semicolon in quotes is a literal character token,
representing part of the C syntax for the statement; the naked semicolon, and the colon,
are Bison punctuation used in every rule.

stmt: RETURN expr ’;°

See Section 3.3 [Syntax of Grammar Rules], page 33.

1.3 Semantic Values

A formal grammar selects tokens only by their classifications: for example, if a rule mentions
the terminal symbol ‘integer constant’, it means that any integer constant is grammatically
valid in that position. The precise value of the constant is irrelevant to how to parse the
input: if ‘x+4’ is grammatical then ‘x+1’ or ‘x+3989’ is equally grammatical.

But the precise value is very important for what the input means once it is parsed.
A compiler is useless if it fails to distinguish between 4, 1 and 3989 as constants in the
program! Therefore, each token in a Bison grammar has both a token type and a semantic
value. See Section 3.5 [Defining Language Semantics|, page 34, for details.

The token type is a terminal symbol defined in the grammar, such as INTEGER,
IDENTIFIER or ’,’. It tells everything you need to know to decide where the token may
validly appear and how to group it with other tokens. The grammar rules know nothing
about tokens except their types.

The semantic value has all the rest of the information about the meaning of the token,
such as the value of an integer, or the name of an identifier. (A token such as ’,’ which is
just punctuation doesn’t need to have any semantic value.)

For example, an input token might be classified as token type INTEGER and have the
semantic value 4. Another input token might have the same token type INTEGER but
value 3989. When a grammar rule says that INTEGER is allowed, either of these tokens is
acceptable because each is an INTEGER. When the parser accepts the token, it keeps track
of the token’s semantic value.

Each grouping can also have a semantic value as well as its nonterminal symbol. For
example, in a calculator, an expression typically has a semantic value that is a number. In
a compiler for a programming language, an expression typically has a semantic value that
is a tree structure describing the meaning of the expression.

1.4 Semantic Actions

In order to be useful, a program must do more than parse input; it must also produce some
output based on the input. In a Bison grammar, a grammar rule can have an action made
up of C statements. Each time the parser recognizes a match for that rule, the action is
executed. See Section 3.5.3 [Actions], page 35.

Most of the time, the purpose of an action is to compute the semantic value of the whole
construct from the semantic values of its parts. For example, suppose we have a rule which
says an expression can be the sum of two expressions. When the parser recognizes such a
sum, each of the subexpressions has a semantic value which describes how it was built up.

14 Bison 1.20

The action for this rule should create a similar sort of value for the newly recognized larger
expression.

For example, here is a rule that says an expression can be the sum of two subexpressions:
expr: expr ’+’ expr { $$ = $1 + $3; }

The action says how to produce the semantic value of the sum expression from the values
of the two subexpressions.

1.5 Bison Output: the Parser File

When you run Bison, you give it a Bison grammar file as input. The output is a C source file
that parses the language described by the grammar. This file is called a Bison parser. Keep
in mind that the Bison utility and the Bison parser are two distinct programs: the Bison
utility is a program whose output is the Bison parser that becomes part of your program.

The job of the Bison parser is to group tokens into groupings according to the grammar
rules—for example, to build identifiers and operators into expressions. As it does this, it
runs the actions for the grammar rules it uses.

The tokens come from a function called the lexical analyzer that you must supply in some
fashion (such as by writing it in C). The Bison parser calls the lexical analyzer each time it
wants a new token. It doesn’t know what is “inside” the tokens (though their semantic values
may reflect this). Typically the lexical analyzer makes the tokens by parsing characters of
text, but Bison does not depend on this. See Section 4.2 [The Lexical Analyzer Function
yylex|, page 43.

The Bison parser file is C code which defines a function named yyparse which implements
that grammar. This function does not make a complete C program: you must supply some
additional functions. One is the lexical analyzer. Another is an error-reporting function
which the parser calls to report an error. In addition, a complete C program must start
with a function called main; you have to provide this, and arrange for it to call yyparse or
the parser will never run. See Chapter 4 [Parser C-Language Interface], page 43.

Aside from the token type names and the symbols in the actions you write, all variable
and function names used in the Bison parser file begin with ‘yy’ or ‘YY’. This includes
interface functions such as the lexical analyzer function yylex, the error reporting function
yyerror and the parser function yyparse itself. This also includes numerous identifiers
used for internal purposes. Therefore, you should avoid using C identifiers starting with
‘yy’ or ‘YY’ in the Bison grammar file except for the ones defined in this manual.

1.6 Stages in Using Bison

The actual language-design process using Bison, from grammar specification to a working
compiler or interpreter, has these parts:

1. Formally specify the grammar in a form recognized by Bison (see Chapter 3 [Bison
Grammar Files], page 31). For each grammatical rule in the language, describe the
action that is to be taken when an instance of that rule is recognized. The action is
described by a sequence of C statements.

2. Write a lexical analyzer to process input and pass tokens to the parser. The lexical
analyzer may be written by hand in C (see Section 4.2 [The Lexical Analyzer Function

Chapter 1: The Concepts of Bison 15

yylex], page 43). It could also be produced using Lex, but the use of Lex is not
discussed in this manual.
3. Write a controlling function that calls the Bison-produced parser.

4. Write error-reporting routines.

To turn this source code as written into a runnable program, you must follow these steps:
1. Run Bison on the grammar to produce the parser.
2. Compile the code output by Bison, as well as any other source files.
3. Link the object files to produce the finished product.

1.7 The Overall Layout of a Bison Grammar

The input file for the Bison utility is a Bison grammar file. The general form of a Bison
grammar file is as follows:

hi

C declarations

%}

Bison declarations

hlo

Grammar rules

hoto

Additional C code
The ‘%%, ‘%{’ and ‘%4}’ are punctuation that appears in every Bison grammar file to separate
the sections.

The C declarations may define types and variables used in the actions. You can also use
preprocessor commands to define macros used there, and use #include to include header
files that do any of these things.

The Bison declarations declare the names of the terminal and nonterminal symbols, and
may also describe operator precedence and the data types of semantic values of various
symbols.

The grammar rules define how to construct each nonterminal symbol from its parts.

The additional C code can contain any C code you want to use. Often the definition of
the lexical analyzer yylex goes here, plus subroutines called by the actions in the grammar
rules. In a simple program, all the rest of the program can go here.

17

2 Examples

Now we show and explain three sample programs written using Bison: a reverse polish
notation calculator, an algebraic (infix) notation calculator, and a multi-function calculator.
All three have been tested under BSD Unix 4.3; each produces a usable, though limited,
interactive desk-top calculator.

These examples are simple, but Bison grammars for real programming languages are
written the same way.

2.1 Reverse Polish Notation Calculator

The first example is that of a simple double-precision reverse polish notation calculator (a
calculator using postfix operators). This example provides a good starting point, since oper-
ator precedence is not an issue. The second example will illustrate how operator precedence
is handled.

The source code for this calculator is named rpcalc.y. The ‘.y’ extension is a convention
used for Bison input files.

2.1.1 Declarations for rpcalc

Here are the C and Bison declarations for the reverse polish notation calculator. As in C,
comments are placed between ‘/*...%x/’.

/* Reverse polish notation calculator. */

YA
#define YYSTYPE double
#include <math.h>

h}
%token NUM

%% /* Grammar rules and actions follow */

The C declarations section (see Section 3.1.1 [The C Declarations Section], page 31)
contains two preprocessor directives.

The #define directive defines the macro YYSTYPE, thus specifying the C data type for
semantic values of both tokens and groupings (see Section 3.5.1 [Data Types of Semantic
Values|, page 35). The Bison parser will use whatever type YYSTYPE is defined as; if you don’t
define it, int is the default. Because we specify double, each token and each expression
has an associated value, which is a floating point number.

The #include directive is used to declare the exponentiation function pow.

The second section, Bison declarations, provides information to Bison about the token
types (see Section 3.1.2 [The Bison Declarations Section]|, page 31). Each terminal sym-
bol that is not a single-character literal must be declared here. (Single-character literals
normally don’t need to be declared.) In this example, all the arithmetic operators are des-
ignated by single-character literals, so the only terminal symbol that needs to be declared
is NUM, the token type for numeric constants.

18 Bison 1.20

2.1.2 Grammar Rules for rpcalc

Here are the grammar rules for the reverse polish notation calculator.
input: /* empty */
| input line

line: ’\n’
| exp ’\n’ { printf ("\t%.10g\n", $1); }

exp: NUM { 83 = $1; by
| exp exp ’+’ { 88 = 81 + $2; }
| exp exp ’-’ { 8% = 81 - $2; }
| exp exp ’*’ { 8% = 81 x $2; b
| exp exp ’/’ {88 = 81/ $2; }
/* Exponentiation */
| exp exp ’°’ { 8% = pow (81, $2); }
/* Unary minus */
| exp ’n’ { 88 = -81; b

hle
The groupings of the rpcalc “language” defined here are the expression (given the name
exp), the line of input (line), and the complete input transcript (input). Each of these
nonterminal symbols has several alternate rules, joined by the ‘|’ punctuator which is read
as “or”. The following sections explain what these rules mean.

The semantics of the language is determined by the actions taken when a grouping
is recognized. The actions are the C code that appears inside braces. See Section 3.5.3
[Actions], page 35.

You must specify these actions in C, but Bison provides the means for passing semantic
values between the rules. In each action, the pseudo-variable $$ stands for the semantic
value for the grouping that the rule is going to construct. Assigning a value to $$ is the
main job of most actions. The semantic values of the components of the rule are referred
to as $1, $2, and so on.

2.1.2.1 Explanation of input
Consider the definition of input:
input: /* empty */
| input line
This definition reads as follows: “A complete input is either an empty string, or a
complete input followed by an input line”. Notice that “complete input” is defined in terms
of itself. This definition is said to be left recursive since input appears always as the
leftmost symbol in the sequence. See Section 3.4 [Recursive Rules], page 34.

The first alternative is empty because there are no symbols between the colon and the
first ‘|’; this means that input can match an empty string of input (no tokens). We write

Chapter 2: Examples 19

the rules this way because it is legitimate to type Ctrl-d right after you start the calculator.
It’s conventional to put an empty alternative first and write the comment ‘/* empty */’ in
it.

The second alternate rule (input line) handles all nontrivial input. It means, “After
reading any number of lines, read one more line if possible.” The left recursion makes this
rule into a loop. Since the first alternative matches empty input, the loop can be executed
7ero or more times.

The parser function yyparse continues to process input until a grammatical error is seen
or the lexical analyzer says there are no more input tokens; we will arrange for the latter
to happen at end of file.

2.1.2.2 Explanation of line

Now consider the definition of line:
line: ’\n”’
| exp ’\n’ { printf ("\t%.10g\n", $1); }

The first alternative is a token which is a newline character; this means that rpcalc
accepts a blank line (and ignores it, since there is no action). The second alternative is
an expression followed by a newline. This is the alternative that makes rpcalc useful. The
semantic value of the exp grouping is the value of $1 because the exp in question is the
first symbol in the alternative. The action prints this value, which is the result of the
computation the user asked for.

This action is unusual because it does not assign a value to $$. As a consequence, the
semantic value associated with the line is uninitialized (its value will be unpredictable).
This would be a bug if that value were ever used, but we don’t use it: once rpcalc has
printed the value of the user’s input line, that value is no longer needed.

2.1.2.3 Explanation of expr

The exp grouping has several rules, one for each kind of expression. The first rule handles
the simplest expressions: those that are just numbers. The second handles an addition-
expression, which looks like two expressions followed by a plus-sign. The third handles
subtraction, and so on.

exp: NUM
| exp exp ’+’ { 8% = 81 + $2; }
| exp exp -’ { 8% = 81 - $2; }

We have used ‘|’ to join all the rules for exp, but we could equally well have written
them separately:

exp: NUM ;
exp: exp exp ’+’ { 8% = 81 + $2; s
exp: exp exp -’ { 8% = 81 - 825 }s

Most of the rules have actions that compute the value of the expression in terms of the
value of its parts. For example, in the rule for addition, $1 refers to the first component exp

20 Bison 1.20

and $2 refers to the second one. The third component, >+, has no meaningful associated
semantic value, but if it had one you could refer to it as $3. When yyparse recognizes a
sum expression using this rule, the sum of the two subexpressions’ values is produced as
the value of the entire expression. See Section 3.5.3 [Actions|, page 35.

You don’t have to give an action for every rule. When a rule has no action, Bison by
default copies the value of $1 into $$. This is what happens in the first rule (the one that
uses NUM).

The formatting shown here is the recommended convention, but Bison does not require
it. You can add or change whitespace as much as you wish. For example, this:

exp : NUM | exp exp ’+’ {$$ = $1 + $2; } |
means the same thing as this:
exp: NUM
| exp exp ’+’ {88 =81+ 82; }

The latter, however, is much more readable.

2.1.3 The rpcalc Lexical Analyzer

The lexical analyzer’s job is low-level parsing: converting characters or sequences of char-
acters into tokens. The Bison parser gets its tokens by calling the lexical analyzer. See
Section 4.2 [The Lexical Analyzer Function yylex|, page 43.

Only a simple lexical analyzer is needed for the RPN calculator. This lexical analyzer
skips blanks and tabs, then reads in numbers as double and returns them as NUM tokens.
Any other character that isn’t part of a number is a separate token. Note that the token-
code for such a single-character token is the character itself.

The return value of the lexical analyzer function is a numeric code which represents a
token type. The same text used in Bison rules to stand for this token type is also a C
expression for the numeric code for the type. This works in two ways. If the token type
is a character literal, then its numeric code is the ASCII code for that character; you can
use the same character literal in the lexical analyzer to express the number. If the token
type is an identifier, that identifier is defined by Bison as a C macro whose definition is the
appropriate number. In this example, therefore, NUM becomes a macro for yylex to use.

The semantic value of the token (if it has one) is stored into the global variable yylval,
which is where the Bison parser will look for it. (The C data type of yylval is YYSTYPE,
which was defined at the beginning of the grammar; see Section 2.1.1 [Declarations for
rpcalc], page 17.)

A token type code of zero is returned if the end-of-file is encountered. (Bison recognizes
any nonpositive value as indicating the end of the input.)

Here is the code for the lexical analyzer:

/* Lexical analyzer returns a double floating point
number on the stack and the token NUM, or the ASCII
character read if not a number. Skips all blanks
and tabs, returns O for EOF. */

#include <ctype.h>

Chapter 2: Examples 21

yylex ()
{

int c;

/* skip white space */
while ((c = getchar ()) ==’ > || ¢ == ’\t’)
/* process numbers */
if (¢ == .7 || isdigit (c))
{
ungetc (c, stdin);
scanf ("Y1f", &yylval);
return NUM;
}
/* return end-of-file */
if (c == EOF)
return O;
/* return single chars */
return c;

}

2.1.4 The Controlling Function

In keeping with the spirit of this example, the controlling function is kept to the bare
minimum. The only requirement is that it call yyparse to start the process of parsing.

main ()
{

yyparse ();
}

2.1.5 The Error Reporting Routine

When yyparse detects a syntax error, it calls the error reporting function yyerror to print
an error message (usually but not always "parse error"). It is up to the programmer
to supply yyerror (see Chapter 4 [Parser C-Language Interface], page 43), so here is the
definition we will use:

#include <stdio.h>

yyerror (s) /* Called by yyparse on error */
char *s;
{
printf ("%s\n", s);
}

After yyerror returns, the Bison parser may recover from the error and continue parsing
if the grammar contains a suitable error rule (see Chapter 6 [Error Recovery], page 59).
Otherwise, yyparse returns nonzero. We have not written any error rules in this example,

22 Bison 1.20

so any invalid input will cause the calculator program to exit. This is not clean behavior
for a real calculator, but it is adequate in the first example.

2.1.6 Running Bison to Make the Parser

Before running Bison to produce a parser, we need to decide how to arrange all the source
code in one or more source files. For such a simple example, the easiest thing is to put
everything in one file. The definitions of yylex, yyerror and main go at the end, in the
“additional C code” section of the file (see Section 1.7 [The Overall Layout of a Bison
Grammar|, page 15).

For a large project, you would probably have several source files, and use make to arrange
to recompile them.

With all the source in a single file, you use the following command to convert it into a
parser file:

bison file_name.y

In this example the file was called rpcalc.y (for “Reverse Polish CALCulator”). Bison
produces a file named file_name.tab.c, removing the .y’ from the original file name.
The file output by Bison contains the source code for yyparse. The additional functions in
the input file (yylex, yyerror and main) are copied verbatim to the output.

2.1.7 Compiling the Parser File
Here is how to compile and run the parser file:

List files in current directory.
% 1s
rpcalc.tab.c rpcalc.y

+H+

Compile the Bison parser.
‘~1m’ tells compiler to search math library for pow.
% cc rpcalc.tab.c -1m -o rpcalc

=+

List files again.
% 1s
rpcalc rpcalc.tab.c rpcalc.y

The file rpcalc now contains the executable code. Here is an example session using
rpcalc.

% rpcalc

4 9 +

13

37+ 345 x+-

-13

37+345%+-n Note the unary minus, ‘n’
13

56/ 4n+

-3.166666667

34° Exponentiation
81

Chapter 2: Examples 23

) End-of-file indicator
%

2.2 Infix Notation Calculator: calc

We now modify rpcalc to handle infix operators instead of postfix. Infix notation involves
the concept of operator precedence and the need for parentheses nested to arbitrary depth.
Here is the Bison code for calc.y, an infix desk-top calculator.

/* Infix notation calculator--calc */

YAl

#define YYSTYPE double
#include <math.h>

%t

/* BISON Declarations */

Jitoken NUM

hleft =7 742

%left)% ;/7

%left NEG /* negation--unary minus */
Jright >’ /* exponentiation */

/* Grammar follows */

/YA

input: /* empty string */
| input line

line: ’\n’
| exp ’\n’ { printf ("\t%.10g\n", $1); }

exp: NUM { 88 = 81, }
| exp ’+’ exp { %% = $1 + $3; }
| exp -’ exp { 83 = $1 - $3; b
| exp ’*’ exp { 8% = 81 *x $3; b
| exp ’/’ exp { $$ = $1 / $3; }
| °-> exp Y%prec NEG { $$ = -$2; }
| exp >"’ exp { $3 = pow (81, $3); }
| > exp ’)’ { $$ = $2; }

hto
The functions yylex, yyerror and main can be the same as before.
There are two important new features shown in this code.

In the second section (Bison declarations), %1left declares token types and says they are
left-associative operators. The declarations %left and %right (right associativity) take the

24 Bison 1.20

place of %token which is used to declare a token type name without associativity. (These
tokens are single-character literals, which ordinarily don’t need to be declared. We declare
them here to specify the associativity.)

Operator precedence is determined by the line ordering of the declarations; the higher
the line number of the declaration (lower on the page or screen), the higher the precedence.
Hence, exponentiation has the highest precedence, unary minus (NEG) is next, followed by
“*” and ‘/’, and so on. See Section 5.3 [Operator Precedence], page 51.

The other important new feature is the %prec in the grammar section for the unary
minus operator. The %prec simply instructs Bison that the rule ‘| -’ exp’ has the same
precedence as NEG—in this case the next-to-highest. See Section 5.4 [Context-Dependent
Precedence], page 53.

Here is a sample run of calc.y:
% calc
4 + 4.5 - (34/(8%3+-3))
6.880952381
-56 + 2
-54
3" 2
9

2.3 Simple Error Recovery

Up to this point, this manual has not addressed the issue of error recovery—how to continue
parsing after the parser detects a syntax error. All we have handled is error reporting with
yyerror. Recall that by default yyparse returns after calling yyerror. This means that
an erroneous input line causes the calculator program to exit. Now we show how to rectify
this deficiency.

The Bison language itself includes the reserved word error, which may be included in
the grammar rules. In the example below it has been added to one of the alternatives for
line:

line: ’\n’
| exp ’\n> { printf ("\t%.10g\n", $1); }
| error ’\n’ { yyerrok; }

This addition to the grammar allows for simple error recovery in the event of a parse
error. If an expression that cannot be evaluated is read, the error will be recognized by the
third rule for line, and parsing will continue. (The yyerror function is still called upon
to print its message as well.) The action executes the statement yyerrok, a macro defined
automatically by Bison; its meaning is that error recovery is complete (see Chapter 6 [Error
Recovery], page 59). Note the difference between yyerrok and yyerror; neither one is a
misprint.

This form of error recovery deals with syntax errors. There are other kinds of errors; for
example, division by zero, which raises an exception signal that is normally fatal. A real
calculator program must handle this signal and use longjmp to return to main and resume
parsing input lines; it would also have to discard the rest of the current line of input. We
won’t discuss this issue further because it is not specific to Bison programs.

Chapter 2: Examples 25

2.4 Multi-Function Calculator: mfcalc

Now that the basics of Bison have been discussed, it is time to move on to a more advanced
problem. The above calculators provided only five functions, ‘+’, *=’, “*’, ¢/> and ‘~’. It
would be nice to have a calculator that provides other mathematical functions such as sin,
cos, etc.

It is easy to add new operators to the infix calculator as long as they are only single-
character literals. The lexical analyzer yylex passes back all non-number characters as
tokens, so new grammar rules suffice for adding a new operator. But we want something
more flexible: built-in functions whose syntax has this form:

function_name (argument)

At the same time, we will add memory to the calculator, by allowing you to create named
variables, store values in them, and use them later. Here is a sample session with the
multi-function calculator:

% acalc

pi = 3.141592653589
3.1415926536
sin(pi)
0.0000000000

alpha = betal = 2.3
2.3000000000

alpha

2.3000000000
1n(alpha)
0.8329091229
exp(1ln(betal))
2.3000000000

b

Note that multiple assignment and nested function calls are permitted.

2.4.1 Declarations for mfcalc

Here are the C and Bison declarations for the multi-function calculator.

W

#include <math.h> /* For math functions, cos(), sin(), etc. */
#include "calc.h" /* Contains definition of ‘symrec’ */
¥

funion {

double val; /* For returning numbers. */
symrec *tptr; /* For returning symbol-table pointers */
}

%token <val> NUM /* Simple double precision number */
/%token <tptr> VAR FNCT /* Variable and Function */

%type <val> exp

%right °=’

Yleft ’=2 4

%left %) 7/)

%left NEG /* Negation--unary minus */

26 Bison 1.20

%right °~’ /* Exponentiation */
/* Grammar follows */
hh

The above grammar introduces only two new features of the Bison language. These
features allow semantic values to have various data types (see Section 3.5.2 [More Than
One Value Type|, page 35).

The %union declaration specifies the entire list of possible types; this is instead of defining
YYSTYPE. The allowable types are now double-floats (for exp and NUM) and pointers to entries
in the symbol table. See Section 3.6.3 [The Collection of Value Types], page 40.

Since values can now have various types, it is necessary to associate a type with each
grammar symbol whose semantic value is used. These symbols are NUM, VAR, FNCT, and exp.
Their declarations are augmented with information about their data type (placed between
angle brackets).

The Bison construct %type is used for declaring nonterminal symbols, just as %token
is used for declaring token types. We have not used %type before because nonterminal
symbols are normally declared implicitly by the rules that define them. But exp must be
declared explicitly so we can specify its value type. See Section 3.6.4 [Nonterminal Symbols],
page 40.

2.4.2 Grammar Rules for mfcalc

Here are the grammar rules for the multi-function calculator. Most of them are copied
directly from calc; three rules, those which mention VAR or FNCT, are new.

input: /* empty */
| input line

line:
7\n7

| exp ’\n’ { printf ("\t%.10g\n", $1); }
| error ’\n’ { yyerrok; }

exp: NUM { 88 = $1; }
| VAR { $$ = $1->value.var; ¥
| VAR ’=’ exp { $$ = $3; $1->value.var = $3; }
| FNCT > (’ exp ’)’ { $$ = (*($1->value.fnctptr))($3); }
| exp ’+’ exp { $% = $1 + $3; }
| exp -’ exp { $$ = $1 - $3; }
| exp "’ exp { $% = $1 = $3; }
| exp °/’ exp { $$ =81 / $3; }
| -2 exp ‘prec NEG { $$ = -$2; }
| exp ’7’ exp { $$ = pow ($1, $3); }
| 2 exp ’)’ { 3% = $2; }

/* End of grammar */

hh

Chapter 2: Examples 27

2.4.3 The mfcalc Symbol Table

The multi-function calculator requires a symbol table to keep track of the names and mean-
ings of variables and functions. This doesn’t affect the grammar rules (except for the
actions) or the Bison declarations, but it requires some additional C functions for support.

The symbol table itself consists of a linked list of records. Its definition, which is kept in
the header calc.h, is as follows. It provides for either functions or variables to be placed
in the table.

/* Data type for links in the chain of symbols. */
struct symrec
{
char #*name; /* name of symbol */
int type; /* type of symbol: either VAR or FNCT */
union {
double var; /* value of a VAR */
double (xfnctptr)(); /* value of a FNCT */
} value;
struct symrec *next; /* link field */
};

typedef struct symrec symrec;

/* The symbol table: a chain of ‘struct symrec’. */
extern symrec *sym_table;

symrec *putsym ();
symrec *getsym ();

The new version of main includes a call to init_table, a function t